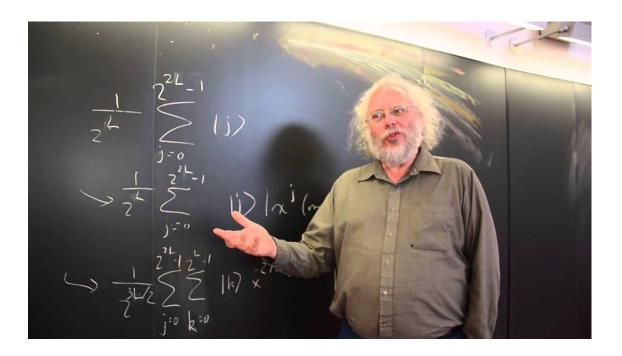


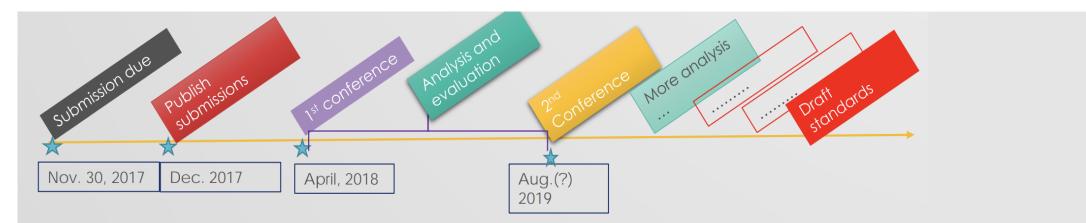

D-INFK, Information Security, Applied Crypto


Internet Security in the Quantum Era

Prof. Kenny Paterson

(D-INFK, Institute of Information Security, Applied Cryptography Group)

Quantum Computing – Shor's Algorithm


Basic tenet of quantum physics: superposition

https://www.youtube.com/watch?v=hOIOY7NyMfs

Quantum Computing and Classical Cryptography

- Everyday life as we know it depends heavily on public-key cryptography.
- Shor's algorithm breaks all currently-deployed public-key cryptographic algorithms.
- The advent of large scale quantum computing would be catastrophic for Internet security.
- A global effort is underway to research and prepare for deployment a new generation of cryptographic algorithms.
- The process is led by US government National Institute of Standards and Technology (NIST).

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/asiacrypt-2017-moody-pqc.pdf

ETH zürich Kenny Paterson, D-INFK, Information Security, Applied Crypto Group

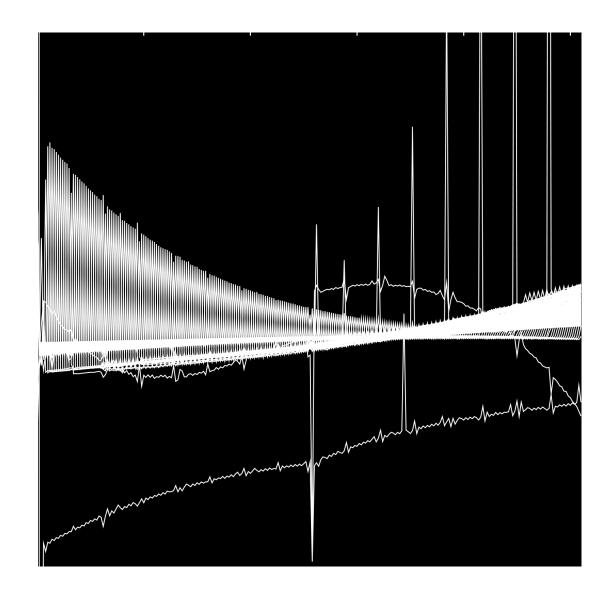
ETH Involvement: Applied Cryptography Group

- We are co-designers of one of the finalist algorithms, «merged classic McEliece», see:
 - <u>https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement</u>
- We are developing *hybrid* approaches to safely and smoothly integrate the new algorithms into existing Internet security protocols, see:
 - <u>https://www.research-</u>
 <u>collection.ethz.ch/handle/20.500.11850/399145</u>
- We are active in IETF/IRTF, the bodies responsible for maintaining specifications for Internet procotols:
 - <u>https://www.ietf.org/</u>
 - <u>https://irtf.org/cfrg</u>

Initiator	Responder
Initiator	Responder
CLASS KEX $(cnk_A, csk_A) \notin KFM KevGen()$	
CLASS. KEX $(cpk_A, csk_A) \stackrel{\&}{\leftarrow} \text{KEM.KeyGen}()$ QRA KEX $(qpk_A, qsk_A) \stackrel{\&}{\leftarrow} \text{QKEM.KeyGen}()$	
$m_0 \leftarrow \text{header}_A, qpk_A, cpk_A$	
AUTH $mkey_A \leftarrow PRF(PRF(PSK, SecState), label_A)$	
$\textbf{AUTH} \ \tau_0 \leftarrow \textsf{MAC}(mkey_A, m_0)$	$\tau_0 \stackrel{?}{=} MAC(mkey_A, m_0)$ VERIFY
m_0, au_0	
	$(cpk_B, k) \stackrel{\$}{\leftarrow} KEM.Encaps(cpk_A) \ CLASS. \ KEX$
	$(qpk_B, qsk) \stackrel{\$}{\leftarrow} QKEM.Encaps(qpk_A) \operatorname{QRA} \operatorname{KEX} m_1 \leftarrow header_B, qpk_B, cpk_B$
	$m_1 \leftarrow \text{Header}_B, q_{PKB}, e_{PKE}$ $m_1 \leftarrow \text{Header}_B, q_{PKB}, e_{PKE}$
VERIFY $\tau_1 \stackrel{?}{=} MAC(mkey_B, m_1)$	$\tau_1 \leftarrow MAC(mkey_B, m_1)$ AUTE
m_1, τ_1	·1····································
4	
	$ck \leftarrow PRF(k, label_{ck}) \ \mathbf{CLASS}. \ \mathbf{KEX}$
	$qk \leftarrow PRF(qsk, label_{qk}) \ QRA \ KEX$
CLASS. KEX $k \leftarrow KEM.Decaps(csk_A, cpk_B), ck \leftarrow PR$	$F(k,label_{ck})$
$\mathbf{QRA} \text{ KEX} qsk \leftarrow QKEM.Decaps(qsk_A, qpk_B)$	
$QRA KEX qk \leftarrow PRF(qsk, label_{qk})$	
OPA KDE h / DPE/	$(qk, m_0 m_1)$ QRA KDF
•	$(ck, m_0 m_1)$ GRA KDF RF (ck, k_0) CLASS. KDF
-	$[index-qkm], k_1$ QKM KDF
	SecState, k_2) PCS KDF
	$- PRF(k_3, m_0 m_1 ctr)$
, 11, 2	ctr + 1

$$\begin{split} & \mathsf{Adv}_{\mathsf{Muckle},n_P,n_S,n_T}^{\mathsf{HAKE},\mathsf{clean}_{\mathsf{cHAKE}},\mathcal{A}}(\lambda) \leq \\ & 2 \cdot n_P^2 n_S n_T \cdot \left(\mathsf{Adv}_{\mathsf{PRF},\mathcal{A}}^{\mathsf{prf}}(\lambda) + \mathsf{Adv}_{\mathsf{MAC},\mathcal{A}}^{\mathsf{eufcma}}(\lambda)\right) \\ & + n_P^2 n_S^2 n_T \cdot \left(\mathsf{Adv}_{\mathsf{KEM},\mathcal{A}}^{\mathsf{ind-cpa}}(\lambda) + (13 + 2 \cdot n_T) \cdot \mathsf{Adv}_{\mathsf{PRF},\mathcal{A}}^{\mathsf{prf}}(\lambda) \right. \\ & + \mathsf{Adv}_{\mathsf{KEM},\mathcal{A}}^{\mathsf{ind-cpa}}(\lambda) + (13 + 2 \cdot n_T) \cdot \mathsf{Adv}_{\mathsf{PRF},\mathcal{A}}^{\mathsf{prf}}(\lambda) \end{split}$$

ETH zürich


ETH zürich

Thank you for your attention!

Professor Kenny Paterson kenny.paterson@inf.ethz.ch

ETH Zürich Applied Cryptography Group CNB E 104 Universitätstrasse 6 8092 Zurich, Switzerland

www.appliedcrypto.ethz.ch

