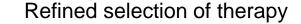

Dept. Computer Science, Inst. for Machine Learning


Machine Learning Approaches for Cancer Survival Prediction

Prof. Valentina Boeva ETH Zürich, Dept. of Computer Science, Institute for Machine Learning

Objective: Predict cancer survival and drug sensitivity from multi-omics data

Data specifics:

- Ultra-high dimensionality of input data & limited number of observations (profiled cancer patients)
- High collinearity between the covariates

Challenges:

- Model stability and interpretability
- Challenge of bringing a model to clinics (limited number of biomarkers)

ETH zürich

Objective: Predict cancer survival and drug sensitivity from multi-omics data

Biological prior

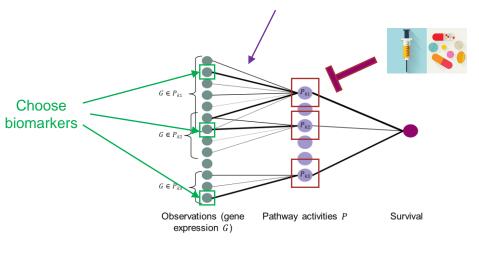
Our solution:

Integrate biological prior information

Refined selection of therapy

Objective: Predict cancer survival and drug sensitivity from multi-omics data

Biological prior

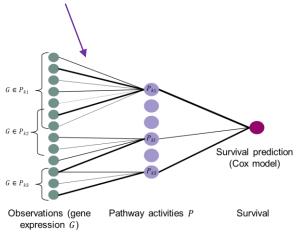

Our solution:

- Integrate biological prior information
- Extensive model regularization
 - E.g., with multi-task learning on several cancer types
 - Using side channel information

ETH zürich

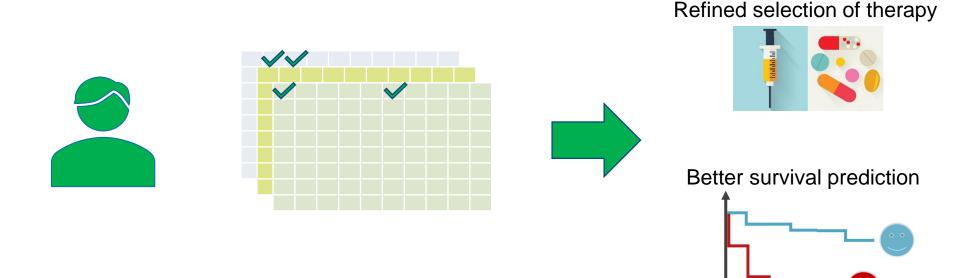
Refined selection of therapy

Multi-task learning on several cancer types



Similar weights for similar molecular pathways

Uveal melanoma


Skin melanoma

N = 331

ETH zürich

Final outcome: Survival and drug response biomarkers for precision medicine

ETH zürich

Thank you for your attention!

Professor Valentina Boeva valentina.boeva@inf.ethz.ch

ETH Zurich Dept of Computer Science CAB F51.2 Universitatstrasse 6 8092 Zurich, Switerland

www.boevalab.com