

Process-quality based Performance Assessment for Metal Structures

Prof. Dr. Andreas Taras D-BAUG, IBK, Steel and Composite Structures

Steel Structures – Infrastructure, Energy, Architecture

Traditional Metal Structures Design and Performance Assessment

Andreas Taras, D-BAUG

ETH zürich

- a. Deformation capacity is represented by rough classification system that leads to discontinuities of predictions
- b. Strength is estimated through highly idealized stress distributions
- Instability in compression is covered by calibrated "buckling curves" = resistance functions, f (geometry, material, modelling...)
- d. All resistance functions are based on extremely low fractiles of production / material parameters (guaranteed values)
 - Average underestimation of strength in the range of 50%

3

Large scale: Compressive behaviour of high-strength-steel thin-walled tubes

- DIC: measurements of initial shape and 3D displacement field during loading
- Reverse engineering: construction of FEM models with as-built geometries from point clouds
- Standard destructive and non-destructive material characterization tests on samples

Small scale:

Wire and arc additively manufactured (WAAM) steel bars (cooperation with Gramazio Kohler Research Group, D-ARCH)

same steps as previously shown ...

Geometry evaluation of the WAAM steel bars and mesh processing for finite element simulations

ETH zürich

5

Prediction accuracy of simulation models:

Statistics for N _{u,Exp} / N _{u,SIM}	
Mean value (n=180)	99%
CoV	3,5%

- Simulation accuracy for ductility- and instability-dominated failure modes is very high
- Validated models are thus used for the creation of very large data sets of numerical tests
- The latter are based on quality-control data on basic variables from production (material, geometry) and Monte Carlo sampling techniques

6

Development of Prediction Models: by Human and Artificial Intelligence

- With these data sets, significant improvements in prediction model accuracy and economy can already be achieved with conventional, "human-developed" resistance functions
- Accuracy can further massively be increased with AI techniques (here: Deep Neural Networks)

Conclusions: What we could do with your production data

For individual, bespoke construction products:

- Vastly reduce or altogether eliminate the need for component tests
- Develop extremely accurate and economical design and assessment methods

For steel design methods in general:

 Provide the basis for data-based and Aldriven design and prediction of structural performance of metallic structures

ETH zürich

Thank you for your attention!

Prof. Dr. Andreas Taras taras@ibk.baug.ethz.ch

ETH Zurich D-BAUG – IBK HIL D36.1 Stefano-Franscini-Platz 8093 Zurich

https://taras.ibk.ethz.ch/